

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Converting unprotected monosaccharides into functionalised lactols in aqueous media: metal-mediated allylation combined with tandem hydroformylation-cyclisation

Tiina Saloranta,^[a] Christian Müller,^[b] Dieter Vogt,^{*[b]} and Reko Leino^{*[a]}

^[a] Laboratory of Organic Chemisty, Åbo Akademi University, 20500 Åbo, Finland

^[b]Schuit Institute of Catalysis, Laboratory of Homogeneous Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

SUPPORTING INFORMATION

Experimental section	2-5
¹ H NMR spectrum of compound 3t	6
13 C NMR spectrum of compound 3t	7
¹ H NMR spectrum of compound 4	8
¹³ C NMR spectrum of compound 4	9
¹ H NMR spectrum of compound 5	10
¹³ C NMR spectrum of compound 5	11
¹ H NMR spectrum of compound 6	12
¹³ C NMR spectrum of compound 6	13

EXPERIMENTAL SECTION

General remarks: All air- or sensitive operations were performed using standard Schlenktechniques under a purified argon atmosphere. The deionised water was deoxygenated prior to use. Toluene was purified over alumina column and degassed. 9,9-Dimethyl-2,7-bissulfonato-4,5-bis(diphenylphosphino)xanthene sodium salt was prepared according to a literature procedure.¹ All other reagents were purchased and used as received. The synthesis gas [CO (99.999%)/H₂ (99.999%), 1:1] was purchased from Linde AG. NMR spectra were recorded at room temperature in MeOD using Bruker Avance 600 NMR and referenced against tetramethylsilane. ¹H NMR spectra of compounds **3t**, **4**, **5** and **6** were analysed by PERCH software with spin simulation/iteration techniques.² HRMS were recorded using Bruker Micro Q-TOF with ESI (electro spray ionisation) operated in positive mode. The ICP-OES measurements were performed with a SPECTRO CIROS^{CCD} spectrometer equipped with a free running 27.12 MHz generator at a power of 1400 W. The sample introduction was performed by a cross-flow nebulizer with a double pass Scott type spray chamber and a sample uptake rate of 2 mL/min. The outer gas flow was 12 L/min, the intermediate gas flow was 1 L/min and the nebulizer gas flow was 1.00 mL/min.

Allylation of unprotected monosaccharides – gram-scale synthesis (details given apply for the allylation of D-mannose): 5 g (27.8 mmol) of D-mannose was dissolved in 600 mL of EtOH:H₂O (10:1) at room temperature. 6.7 g (55.5 mmol, 2 eq.) of tin powder and 7.2 mL (83.4 mmol, 3 eq.) of allyl bromide were added. The reaction mixture was stirred under Ar atmosphere at room temperature for 20 min after which the temperature was gradually raised to 60 °C. A greyish suspension was obtained after stirring for ~2 h. The colour of the reaction mixture turned gradually to yellow as the stirring was continued for 24 h. The conversion of the starting material was followed by TLC (MeOH/acetone, 1:1). After cooling to room temperature, the reaction mixture was neutralized by adding 18 mL of 5 M NaOH. 300 mL of dichloromethane and 300 mL of water were added, and the phases were separated. The aqueous phase was washed with dichloromethane (2 x 150 mL). The combined organic layers were washed with water (2 x 200 mL). The combined aqueous layers were filtered through

¹ W. P. Mul, K. Ramkisoensing, P. C. J. Kamer, J. N. H. Reek, A. J. van der Linden, A. Marson, P. W. N. M. van Leeuwen, *Adv. Synth. Catal.* **2002**, *344*, 293-298.

² R. Laatikainen, M. Niemitz, U. Weber, J. Sundelin, T. Hassinen, J. Vepsäläinen, J. Magn. Reson. Ser. A **1996**, *120*, 1-10.

celite. The colourless filtrate was concentrated under reduced pressure to obtain the crude product as a white solid.

¹H NMR analysis of the crude product: conversion 100 %, diastereomeric ratio 3:1 (threo:erythro).

The crude product was dissolved in 350 mL of EtOH (60 °C). Upon cooling, the major diastereomer **3t** precipitated as a white crystalline solid. Typically, 2.8 g (45 %) of pure diastereomer was obtained.

Analytical data (the atoms are numbered as in the original carbohydrate structure)

Compound 3t: White solid. Mp 186-188 °C, $R_f = 0.62$ (MeOH/acetone = 1:1), $[a]^{20}_{D} + 22.8$ (c 1.0, H₂O) ¹H NMR (600 MHz, MeOD, 25 °C): d 5.90 (dddd, 1 H, $J_{CH,CH2b} = 6.5$ Hz, $J_{CH,CH2a} = 7.5$ Hz, $J_{CH,CH2-cis} = 10.2$ Hz, $J_{CH,CH2-trans} = 17.2$ Hz, olefinic CH), 5.14 (dddd, 1 H, $J_{CH-trans,CH2b} = -1.4$ Hz, $J_{CH-trans,CH2a} = -1.5$ Hz, $J_{CH-trans,CH-cis} = -2.2$ Hz, $J_{CH-trans,CH} = 17.2$ Hz, olefinic CH_{2-trans}), 5.07 (dddd, 1 H, $J_{CH-cis,CH2b} = -0.9$ Hz, $J_{CH-cis,CH2a} = -0.9$ Hz, $J_{CH-trans,CH-cis} = -2.2$ Hz, $J_{CH-trans,CH} = 10.2$ Hz, olefinic CH_{2-trans}), 5.07 (dddd, 1 H, $J_{CH-cis,CH2b} = -0.9$ Hz, $J_{CH-cis,CH2a} = -0.9$ Hz, $J_{CH-trans,CH-cis} = -2.2$ Hz, $J_{CH-trans,CH} = 10.2$ Hz, olefinic CH_{2-tis}), 3.95 (ddd, 1 H, $J_{1,2} = 1.6$ Hz, $J_{1,CH2a} = 6.2$ Hz, $J_{1,CH2b} = 7.8$ Hz, H-1), 3.91 (dd, 1 H, $J_{3,4} = 1.1$ Hz, $J_{2,3} = 9.2$ Hz, H-3), 3.84 (dd, 1 H, $J_{5,6a} = 3.5$ Hz, $J_{5,6b} = 6.1$ Hz, $J_{6a,6b} = -11.5$ Hz, H-6a), 3.81 (dd, 1 H, $J_{3,4} = 1.1$ Hz, $J_{4,5} = 8.5$ Hz, H-4), 3.73 (ddd, 1 H, $J_{5,6a} = 3.5$ Hz, $J_{5,6b} = 6.1$ Hz, $J_{6a,6b} = -11.5$ Hz, H-5), 3.66 (dd, 1 H, $J_{5,6a} = 6.1$ Hz, $J_{6a,6b} = -11.5$ Hz, H-6b), 3.56 (dd, 1 H, $J_{1,2} = 1.6$ Hz, $J_{2,3} = 9.2$ Hz, H-2), 2.39 (dddd, 1 H, $J_{CH2a, CH-cis} = -0.9$ Hz, $J_{CH2a, CH-trans} = -1.5$ Hz, $J_{CH2a, CH-trans} = -1.5$ Hz, $J_{CH2a, CH-trans} = -1.4$ Hz, $J_{CH2b, CH} = 6.5$ Hz, $J_{CH2a, CH-cis} = -0.9$ Hz, $J_{CH2a, CH-trans} = -1.5$ Hz, $J_{CH2a, CH} = 7.5$ Hz, $J_{CH2a, CH} = -14.1$ Hz, CH_{2a}), 2.35 (dddd, 1 H, $J_{CH2b, CH-cis} = -0.9$ Hz, $J_{CH2a, CH-cis} = -1.4$ Hz, $J_{CH2b, CH} = 6.5$ Hz, $J_{CH2a, CH2b} = -14.1$ Hz, CH_{2a}).

¹³C NMR (150 MHz, MeOD, 25 °C): d 136.6 (olefinic CH), 117.5 (olefinic CH₂), 72.9 (C-5),
72.5 (C-2), 71.1 (C-4), 71.0 (C-1), 70.2 (C-3), 65.0 (C-6), 39.3 (CH₂).

HRMS: m/z: calcd. for C₉H₁₈O₆Na [M+Na]⁺: 245.0996; found: 245.0984.

Compound 4: White solid. $R_f = 0.74$ (MeOH/acetone = 1:1). HRMS: m/z: calcd. for $C_9H_{18}O_5Na \ [M+Na]^+$: 229.1046; found: 229.1051.

4t: ¹H NMR (600 MHz, MeOD, 25 °C): d 5.90 (ddd, 1 H, $J_{CH,CH2b} = 6.5$ Hz, $J_{CH,CH2a} = 7.5$ Hz, $J_{CH,CH2-cis} = 10.2$ Hz, $J_{CH,CH2-trans} = 17.2$ Hz, olefinic CH), 5.11 (dddd, 1 H, $J_{CH-trans,CH2b} = -1.5$ Hz, $J_{CH-trans,CH2a} = -1.5$ Hz, $J_{CH-trans,CH2a} = -1.5$ Hz, $J_{CH-trans,CH2a} = -1.0$ Hz, $J_{CH-trans,CH-cis} = -2.2$ Hz, $J_{CH-trans,CH} = 17.2$ Hz, olefinic CH_{2-trans}), 5.04 (dddd, 1 H, $J_{CH-cis,CH2b} = -1.0$ Hz, $J_{CH-cis,CH2a} = -1.1$ Hz, $J_{CH-trans,CH-cis} = -2.2$ Hz, $J_{CH-cis,CH} = 10.2$ Hz, olefinic CH_{2-cis}), 3.92 (ddd, 1 H, $J_{1,2} = 1.6$ Hz, $J_{1,CH2a} = 6.3$ Hz, $J_{1,CH2b} = 7.7$ Hz, H-1), 3.91 (dd, 1 H, $J_{3,4} = 1.3$ Hz, $J_{2,3} = 8.9$ Hz, H-3), 3.81 (dq, 1 H, $J_{5,CH3} = 6.3$ Hz, $J_{4,5} = 7.7$ Hz, H-5), 3.54 (dd, 1 H, $J_{3,4} = 1.3$ Hz, $J_{4,5} = 7.7$ Hz, H-4), 3.52 (dd, 1 H, $J_{1,2} = 1.6$ Hz, $J_{2,3} = 8.9$ Hz, H-2), 2.37 (dddd, 1 H, $J_{CH2a, CH-cis} = -1.1$ Hz, $J_{CH2a, CH-trans} = -1.5$ Hz, $J_{CH2a,CH} = 7.5$ Hz, $J_{CH2a,CH2b} = -14.0$ Hz, CH_{2a}), 2.34 (dddd, 1 H, $J_{CH2b, CH-cis} = -1.0$ Hz, $J_{CH2b, CH-trans} = -1.5$ Hz, J

4e: ¹H NMR (600 MHz, MeOD, 25 °C): d 5.95 (dddd, 1 H, $J_{CH,CH2a} = 6.9$ Hz, $J_{CH,CH2b} = 7.2$ Hz, $J_{CH,CH2-cis} = 10.3$ Hz, $J_{CH,CH2-trans} = 17.1$ Hz, olefinic CH), 5.11 (dddd, 1 H, $J_{CH-trans,CH2a} = -1.3$ Hz, $J_{CH-trans,CH2b} = -1.3$ Hz, $J_{CH-trans,CH-cis} = -2.3$ Hz, $J_{CH-trans,CH} = 17.1$ Hz, olefinic CH_{2-trans}), 5.05 (dddd, 1 H, $J_{CH-cis,CH2b} = -1.2$ Hz, $J_{CH-cis,CH2a} = -1.9$ Hz, $J_{CH-trans,CH-cis} = -2.3$ Hz, $J_{CH-trans,CH-cis} = -2.3$ Hz, $J_{CH-cis,CH2b} = -1.2$ Hz, $J_{CH-cis,CH2a} = -1.9$ Hz, $J_{CH-trans,CH-cis} = -2.3$ Hz, $J_{CH-cis,CH} = 10.3$ Hz, olefinic CH_{2-cis}), 3.90 (dd, 1 H, $J_{3,4} = 1.3$ Hz, $J_{2,3} = 7.7$ Hz, H-3), 3.81 (dq, 1 H, $J_{5,CH3} = 6.2$ Hz, $J_{4,5} = 7.7$ Hz, H-5), 3.78 (ddd, 1 H, $J_{1,CH2a} = 3.3$ Hz, $J_{1,CH2b} = 6.2$ Hz, $J_{1,2} = 6.2$ Hz, H-1), 3.61 (dd, 1 H, $J_{1,2} = 6.2$ Hz, $J_{2,3} = 7.7$ Hz, H-2), 3.54 (dd, 1 H, $J_{3,4} = 1.3$ Hz, $J_{4,5} = 7.7$ Hz, H-4), 2.48 (dddd, 1 H, $J_{CH2a,CH-trans} = -1.3$ Hz, $J_{CH2a,CH-cis} = -1.9$ Hz, $J_{CH2a,CH} = 6.9$

Hz, $J_{CH2a,CH2b} = -15.2$ Hz, CH_{2a}), 2.25 (dddd, 1 H, $J_{CH2b, CH-cis} = -1.2$ Hz, $J_{CH2b, CH-trans} = -1.3$ Hz, $J_{CH2b,CH} = 7.2$ Hz, $J_{CH2a,CH2b} = -15.2$ Hz, CH_{2b}), 1.26 (d, 3 H, $J_{5,CH3} = 6.2$ Hz, CH_{3}). ¹³C NMR (150 MHz, MeOD, 25 °C): d 137.0 (olefinic *C*H), 117.1 (olefinic *C*H₂), 75.1 (C-4), 75.0 (C-2), 74.1 (C-1), 72.2 (C-3), 68.8 (C-5), 37.9 (*C*H₂), 20.6 (*C*H₃).

Compound 5: White solid, $R_f = 0.22$ (EtOAc/MeOH= 9:1). ¹H NMR (600 MHz, MeOD, 25 °C): d 5.43 (br s, 1 H, anom. H), 4.45 (br s, 1 H, H-1), 4.10 (dd (appears as d), 1 H, $J_{2,3} = 9.4$ Hz, H-2), 3.81 (dd, 1 H, $J_{6a,5} = 3.7$ Hz, $J_{6a,6b} = -11.3$ Hz, H-6a), 3.73 (dd, 1 H, $J_{3,4} = 1.1$ Hz, $J_{4,5} = 8.6$ Hz, H-4), 3.67 (ddd, 1 H, $J_{6a,5} = 3.7$ Hz, $J_{6b,5} = 6.2$ Hz, $J_{4,5} = 8.6$ Hz, H-5), 3.62 (dd, 1 H, $J_{6a,6b} = -11.3$ Hz, H-6b), 3.56 (dd, 1 H, $J_{3,4} = 1.1$ Hz, $J_{2,3} = 9.4$ Hz, H-3), 1.95-1.87 (m, 2 H, ring-H), 1.66-1.54 (m, 4 H, ring H).

¹³C NMR (150 MHz, MeOD, 25 °C): d 103.9 (C-anom.), 79.0 (C-2) 76.9 (C-1), 72.8 (C-5), 71.2 (C-3), 70.9 (C-4), 65.3 (C-6), 32.2 (C-ring), 29.6 (C-ring), 17.1 (C-ring).

HRMS: *m/z*: calcd. for C₁₀H₂₀O₇Na [M+Na]: 275.1101; found: 275.1096.

Compound 6: White solid, $R_f = 0.54$ (EtOAc/MeOH= 9:1). ¹H NMR (600 MHz, MeOD, 25 °C): d 5.43 (br s, 1 H, anom. H), 4.45 (br s, 1 H, H-1), 4.08 (dd (appears as d), 1 H, $J_{2,3} = 9.4$ Hz, H-2), 3.77 (dq, 1 H, $J_{5,CH3} = 6.3$ Hz, $J_{4,5} = 8.1$ Hz, H-5), 3.58 (dd, 1 H, $J_{3,4} = 1.2$ Hz, $J_{2,3} = 9.4$ Hz, H-3), 3.47 (dd, 1 H, $J_{3,4} = 1.2$ Hz, $J_{4,5} = 8.1$ Hz, H-4), 1.95-1.87 (m, 2 H, ring H), 1.66-1.53 (m, 4 H, ring H), 1.26 (d, 3 H, $J_{5,CH3} = 6.3$ Hz, CH₃).

¹³C NMR (150 MHz, MeOD, 25 °C): d 103.8 (C-anom), 79.2 (C-2), 76.8 (C-1), 74.6 (C-4), 70.9 (C-3), 68.2 (C-5), 32.1 (C-ring) 29.6 (C-ring), 20.6 (CH₃), 17.0 (C-ring).

HRMS: m/z: calcd. for C₁₀H₂₀O₆Na [M+Na]⁺: 259.1152; found: 259.1139.

H0'

10

